The Role of the Indonesian Throughflow in the Indo–Pacific Climate Variability in the GFDL Coupled Climate Model

نویسندگان

  • QIAN SONG
  • GABRIEL A. VECCHI
  • ANTHONY J. ROSATI
چکیده

The impacts of the Indonesian Throughflow (ITF) on the tropical Indo–Pacific climate, particularly on the character of interannual variability, are explored using a coupled general circulation model (CGCM). A pair of CGCM experiments—a control experiment with an open ITF and a perturbation experiment in which the ITF is artificially closed—is integrated for 200 model years, with the 1990 values of trace gases. The closure of the ITF results in changes to the mean oceanic and atmospheric conditions throughout the tropical Indo–Pacific domain as follows: surface temperatures in the eastern tropical Pacific (Indian) Ocean warm (cool), the near-equatorial Pacific (Indian) thermocline flattens (shoals), Indo–Pacific warm-pool precipitation shifts eastward, and there are relaxed trade winds over the tropical Pacific and anomalous surface easterlies over the equatorial Indian Ocean. The character of the oceanic changes is similar to that described by ocean-only model experiments, though the amplitude of many features in the tropical Indo– Pacific is amplified in the CGCM experiments. In addition to the mean-state changes, the character of tropical Indo–Pacific interannual variability is substantially modified. Interannual variability in the equatorial Pacific and the eastern tropical Indian Ocean is substantially intensified by the closure of the ITF. In addition to becoming more energetic, El Niño–Southern Oscillation (ENSO) exhibits a shorter time scale of variability and becomes more skewed toward its warm phase (stronger and more frequent warm events). The structure of warm ENSO events changes; the anomalies of sea surface temperature (SST), precipitation, and surface westerly winds are shifted to the east and the meridional extent of surface westerly anomalies is larger. In the eastern tropical Indian Ocean, the interannual SST variability off the coast of Java–Sumatra is noticeably amplified by the occurrence of much stronger cooling events. Closing the ITF shoals the eastern tropical Indian Ocean thermocline, which results in stronger cooling events through enhanced atmosphere– thermocline coupled feedbacks. Changes to the interannual variability caused by the ITF closure rectify into mean-state changes in tropical Indo–Pacific conditions. The modified Indo–Pacific interannual variability projects onto the mean-state differences between the ITF open and closed scenarios, rectifying into meanstate differences. These results suggest that CGCMs need to reasonably simulate the ITF in order to successfully represent not just the mean climate, but its variations as well.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Indo-Pacific Climate Interactions in the Absence of an Indonesian Throughflow

The Pacific and Indian Oceans are connected by an oceanic passage called the Indonesian Throughflow (ITF). In this setting, modes of climate variability over the two oceanic basins interact. El Niño–Southern Oscillation (ENSO) events generate sea surface temperature anomalies (SSTAs) over the Indian Ocean that, in turn, influence ENSO evolution. This raises the question as to whether Indo-Pacif...

متن کامل

The Indonesian throughflow, its variability and centennial change

The Indonesian Throughflow (ITF) is an important component of the upper cell of the global overturning circulation that provides a low-latitude pathway for warm, fresh waters from the Pacific to enter the Indian Ocean. Variability and changes of the ITF have significant impacts on Indo-Pacific oceanography and global climate. In this paper, the observed features of the ITF and its interannual t...

متن کامل

The Role of the Indonesian Throughflow on ENSO Dynamics in a Coupled Climate Model

The effects of the Indonesian Throughflow (ITF) on ENSO dynamics are studied in a coupled climate model by comparing two simulations, one with an open ITF and the other with a closed ITF. Closing the ITF results in an El Niño–like climate state in the Pacific, which is characterized by weakened trade winds, a flatter equatorial thermocline, and weaker equatorial upwelling. A weakened South Equa...

متن کامل

Climate Variability and Radiocarbon in the CM2Mc Earth System Model

The distribution of radiocarbon (C) in the ocean and atmosphere has fluctuated on time scales ranging from seasons to millennia. It is thought that these fluctuations partly reflect variability in the climate system, offering a rich potential source of information to help understand mechanisms of past climate change. Here, a long simulation with a new, coupled model is used to explore the mecha...

متن کامل

Indian Ocean Variability in the GFDL Coupled Climate Model

The interannual variability of the Indian Ocean, with particular focus on the Indian Ocean dipole/zonal mode (IODZM), is investigated in a 250-yr simulation of the GFDL coupled global general circulation model (CGCM). The CGCM successfully reproduces many fundamental characteristics of the climate system of the Indian Ocean. The character of the IODZM is explored, as are relationships between p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006